If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25u^2-26=0
a = 25; b = 0; c = -26;
Δ = b2-4ac
Δ = 02-4·25·(-26)
Δ = 2600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2600}=\sqrt{100*26}=\sqrt{100}*\sqrt{26}=10\sqrt{26}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{26}}{2*25}=\frac{0-10\sqrt{26}}{50} =-\frac{10\sqrt{26}}{50} =-\frac{\sqrt{26}}{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{26}}{2*25}=\frac{0+10\sqrt{26}}{50} =\frac{10\sqrt{26}}{50} =\frac{\sqrt{26}}{5} $
| 8+6=p+6 | | -10=5h=-4h | | -3(-3p+7)+2=4(p-6) | | 4x+12x=30 | | 6∣5p+4∣−16=20 | | |x+9|÷=2 | | (x+11)+(5x+1)=90 | | 13=3x+13/5+x+21/6 | | -3(3+w)+4(w-6)=-4 | | (7•10^4)x/3=4•10^2 | | 3x+7=201 | | 5(x+4)=3x+16 | | 7/1-x=8 | | 7m÷.50=17.5 | | 21x-40=16 | | (3x+13/5)+(x+21/6)=13 | | 13p=25p+23 | | 4g+(-6+5g)=1-g | | 32+5.5m=87 | | -k-5k=5-4 | | X+24+x=-30 | | 5t+16=10-5t | | 6(2g-3)+5=13 | | 3x+13/5+x+21/6=13 | | 2(-36-9)-(-27-11)=x | | 3x+2=14x | | -6.5x+0.45=5.4 | | 6x-24=6x-16 | | 4c=-4 | | -7+x=-3(7+2x) | | 6x+2=2(5x-5)/3 | | 24+10x=40+6x |